Rotoreraft

Wision

International Powered Lift Conference
Co-sponsored by AHS, AIAA, SAE, RaeS
October 30 - November 1, 2000
Hyatt Regency Crystal City
Arlington, Virginia

Dr. John J. Coy Rotorcraft Program Manager NASA Ames Research Center Moffett Field, CA, 94035

Tel: 650-604-3122

Email: jcoy@mail.arc.nasa.gov

Features of the Future World Environment

- High time value for travelers and goods
- Demand for rapid, reliable transport
- Increasing urban/suburban land value
- Demand for routine access to remote areas
- Requirements for robust military systems
- Opportunities for advanced technologies

The Transportation Dilemma

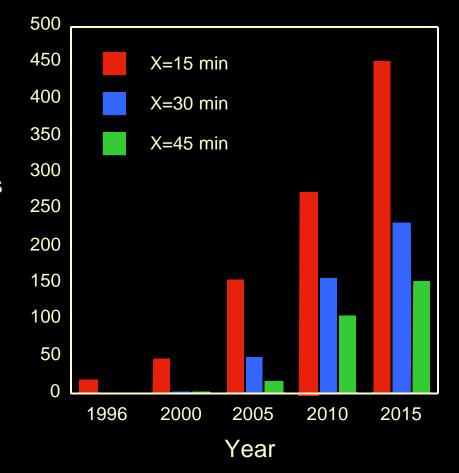
☐ Road transport is no longer a candidate

- Requires valuable land in urban areas
- High capital cost
- Not a high-speed or long-distance solution
- Adverse environmental impact

☐ Rail offers just a partial solution

- Inflexible routes, high capital cost, topographical constraints
- Cost effective only at high traffic densities
- Competes with other uses for land

☐ Fixed-wing air capacity is severely limited by need for runways


- Runway capacity is the bottleneck
- New runways are costly, require valuable land, raise environmental concerns, and have long lead times
- Urban and suburban airports (DCA, LGA, SFO, SJC, MIA, LAX, etc.) will be under great pressure to relocate

Flight Delays Will Worsen Without Corrective Action

Predicted Delay Increase at a Major Hub Airport Based on MITRE DPAT Model

Number of Aircraft
Delayed by
More Than X Minutes

Single day, good weather Single airport, major hub

Total landings

1996: 997

2000: 1,378

2005: 1,576

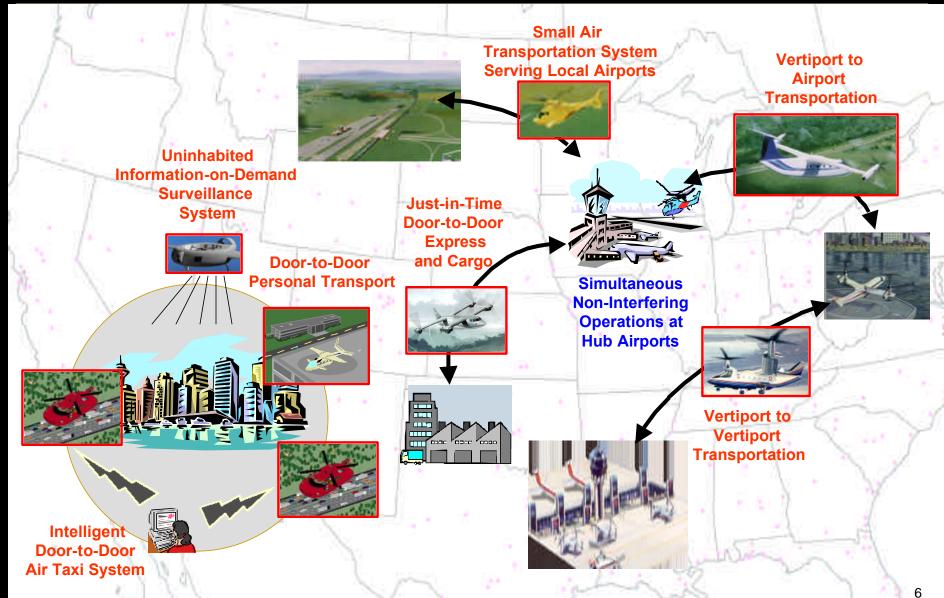
2010: 1,776

2015: 1,910

Future Rotorcraft Vision

A mix of <u>vertical lift air vehicles</u>

operating within a <u>three-dimensional grid</u>


will <u>revolutionize</u> air transportation mobility:

- ✓ True point-to-point or door-to-door transport
- Complete flexibility of origin and destination
- ✓ No need for extensive real estate or large infrastructure investment
- No constraints on system throughput dictated by the need for runways

Rotorcraft Vision

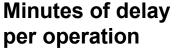
Runway Independent Aircraft Operations

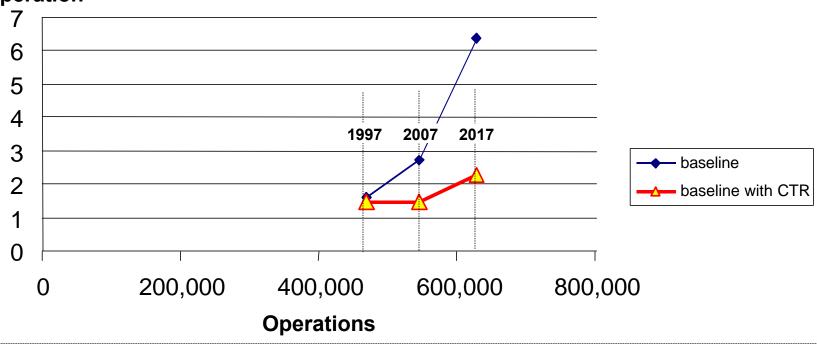
Increases airport throughput by 25% and reduces delays at airports

Provides 50% as much delay reduction as a new runway

Improves terminal area airspace safety and reliability

- Separate corridors and runway traffic for slower aircraft and jet transports
- Improved separation in departure corridors




Commuter fixed wing aircraft (< 300 nm) carry 20% of the passengers, yet account for 40% of the departures at major hub airports

Benefit of Runway Independent Operations

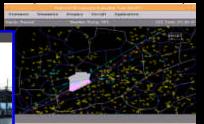
Projected Operations and Delay at EWR 1997 to 2017

Runway-Independent Rotorcraft Can Increase System Throughput by 25% or More

Eliminating runway use for short-haul travel increases capacity by 25%

Simultaneous Non-Interfering Operations for trips under 300 miles enable 30% throughput increase at hubs that account for 80% of traffic

AVSTAR


(Aviation Systems Technology Advanced Research)

Enabling Tomorrow's Air Transportation
System

Reduce separation in the terminal area

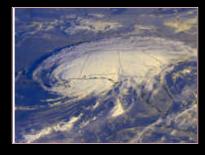
Remove restrictions across facility/sector boundaries

Improved traffic flow management

National
Traffic Flow
Management

Integrated Airspace Decision Support Tools

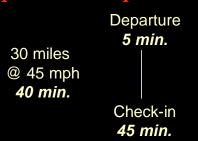
Eliminate surface congestion



Runway Productivity

Surface Congestion Alleviation

Arrival/Departure Decision Support Tools



ATM/TFM Weather Integration

Rotorcraft Can Sharply Reduce Door-to-Door Time

Airport to Airport (Fixed Wing)

200 miles @ 400 mph 30 min.

Approach & landing 5 min. Mode change 20 min.

30 miles @ 45 mph

40 min.

Total trip time

200 miles: 185 min. 300 miles: 200 min. + Delay

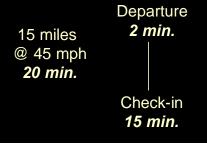
GA Airport/Vertiport to GA Airport/Vertiport (Helicopter)

200 miles @ 200 mph 60 min.

Approach & landing 3 min. Mode change 10 min.

15 miles @ 45 mph 20 min.

15 miles


@ 45 mph

20 min.

Total trip time

200 miles: 130 min. 300 miles: 160 min.

GA Airport/Vertiport to GA Airport/Vertiport (Tiltrotor)

200 miles @ 300 mph 40 min.

Approach & landing 3 min.

Mode change 10 min.

Total trip time

200 miles: 110 min. 300 miles: 130 min.

Barriers to Achieving the Vision

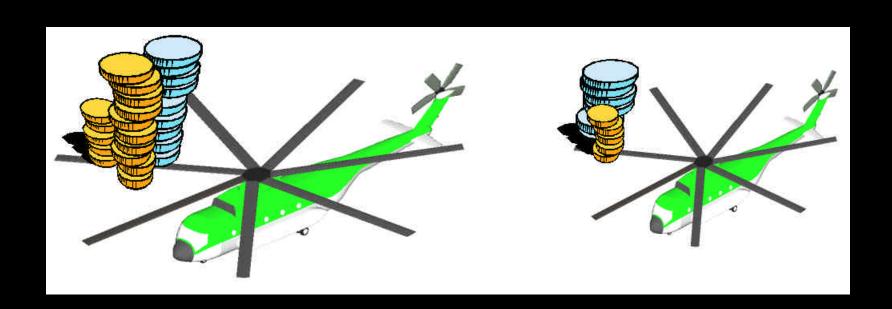
Key Inhibitors to Expanded Rotorcraft Applications:

- Cost per Seat-Mile or Ton-Mile
- Community Acceptance
- Reliable All-Weather Service
- Perceived Safety
- Passenger Acceptance (Ride Comfort, Speed, etc.)
- Piloting Skill Required
- Infrastructure for 3-D Grid Operation

Effects of Technology Improvement

U.S. Army Future Transport Rotorcraft 20-ton Payload, 300-mile Mission Radius

<u> 1994</u>

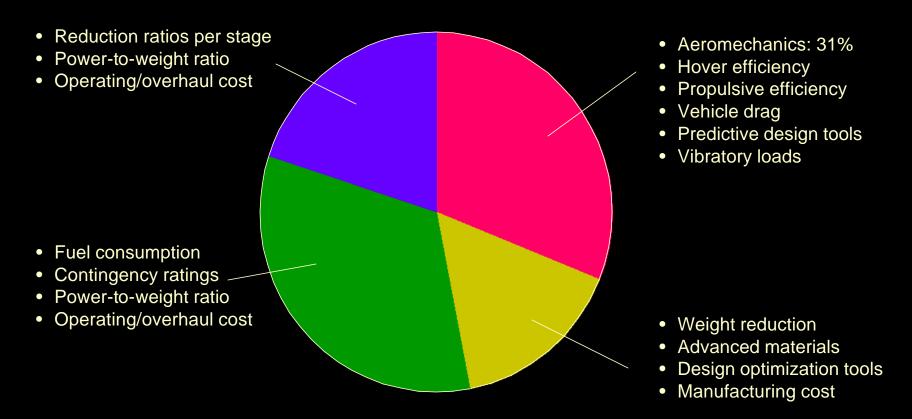

Gross Weight: 126 tons

Unit Flyaway Cost: \$186 mil.

2005

62 tons (-51%)

\$74 mil. (-61%)

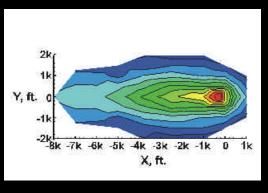


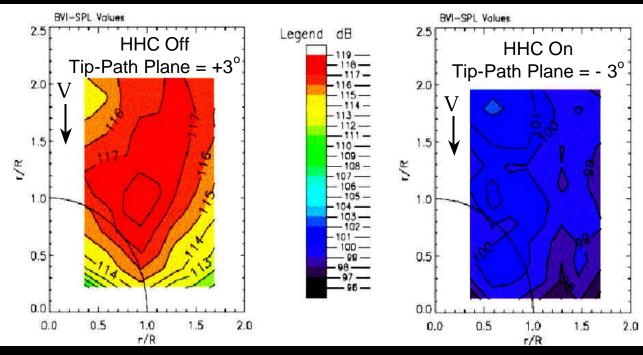
Effects of Technology Improvement

Future Transport Helicopter

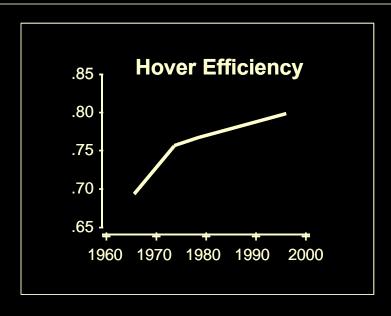
Percent gross weight/cost reduction by source

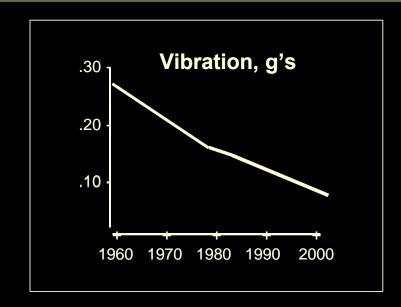
1994 - 2005

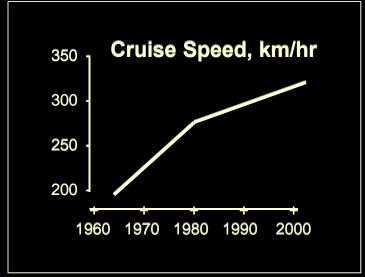

Tiltrotor Noise Reduction Breakthroughs

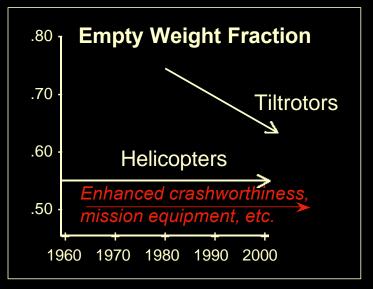

Typical reductions of 12.5 dB demonstrated in wind tunnel tests

Low-noise approach profiles reduce noise footprint







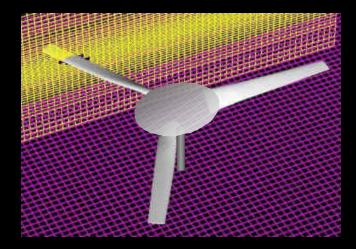


Rotorcraft Technology Trends

Long-Range Technology Goals

ATTRIBUTE	CURRENT LEVEL	2022 TARGET	
Vehicle Efficiency	Hover Efficiency = 0.78	0.87	
	L/D x Prop. Efficiency = 7 at V _{cruise}	13 at V _{cruise}	
	EW Fraction = .55 (helo)62 (tiltrotor)	30% reduction	
Cruise Speed	Helicopter = 170 kts	200 kts	
	Tiltrotor = 250 kts	Advanced Config. = 350 - 400 kts	
External Noise	External noise metric TBD	Below annoyance threshold	
Vibration & Internal Noise	.05g vibration	Imperceptible (.005g)	
Intelligent Automation & Cockpit Integration	Pilot aiding	Operator "directs" vehicle	
	Autonomous flight (UAV)	Autonomous mission optimization	
Reliability & Safety	Reliability metric TBD	Equivalent to fixed-wing airliners	
	Accident rate comparable to General Aviation	Equivalent to fixed-wing airliners	
All-Weather Operability	IFR-capable	Fully autonomous zero-zero	
	Limited icing capability	No restrictions due to icing	

Advanced Rotor/Drive System Concepts


Continuous control of shape and airflow achieves near-ideal performance

Smart material "morphing" blade geometry

Active blowing and boundary layer modification

Swashplate-less control

Lightweight rotor construction

Active vibration and noise control

Low-noise geometry

Super-safe rotor and drive shaft

Reverse velocity airfoils

Variable speed, intelligent, selfreconfigurable drive system

Bio-Analogous Distributed Systems

Distributed sensors, processors, and actuation devices tailor drag and lift, counter vibration, diagnose faults, and implement corrective action

Active aerodynamic controls

Intelligent operator interface

Distributed sensors, processors, and actuation devices


Self-monitoring, adaptive, reconfigurable, self-healing systems

Advanced Vehicle Configurations

High speed enhances productivity of piloted and uninhabited rotorcraft

Personal Transport "Crashproof" Rotorcraft

UAV technology and smart systems enhance safety and reliability

Environmentally friendly

Low-noise rotor

Economical

- Low-cost construction
- Affordable propulsion system

Safe and easy to operate

- Smart autonomous self-reconfigurable control system
- Super-safe health & usage monitoring and advanced diagnostics

High Payoff Research Topics Have Robust Potential

INNOVATIVE TECHNOLOGIES

Intelligent Rotorcraft Systems	Efficient Active Rotor	Revolutionary Configurations
x	x	x
Х	x	х
х	x	х
х	x	х
х		Х
х	Х	х
x		Primary influence
	X X X X X X	X X X X X X X X X X X X X X X X X X X

Conclusions

- Meeting 21st Century air transport needs represents a significant growth opportunity for the rotorcraft community
- Rotorcraft can play a key role in the air transportation system of the future ...
- > ... if they can achieve competitive ticket cost, community acceptance, and passenger comfort
- Rotorcraft have improved on many fronts, but the technology is still maturing
- A strong research effort will be needed to meet NASA, DoD, and industry goals